public final class ScriptIntrinsicBLAS extends ScriptIntrinsic
Modifier and Type | Class and Description |
---|---|
static interface |
ScriptIntrinsicBLAS.Diag |
static interface |
ScriptIntrinsicBLAS.Side |
static interface |
ScriptIntrinsicBLAS.Transpose |
static interface |
ScriptIntrinsicBLAS.Uplo |
Script.Builder, Script.FieldBase, Script.FieldID, Script.InvokeID, Script.KernelID, Script.LaunchOptions
Modifier and Type | Field and Description |
---|---|
static int |
CONJ_TRANSPOSE |
static int |
LEFT |
static int |
LOWER |
static int |
NO_TRANSPOSE |
static int |
NON_UNIT |
static int |
RIGHT |
static int |
TRANSPOSE |
static int |
UNIT |
static int |
UPPER |
Modifier and Type | Method and Description |
---|---|
void |
BNNM(Allocation A,
int a_offset,
Allocation B,
int b_offset,
Allocation C,
int c_offset,
int c_mult)
8-bit GEMM-like operation for neural networks: C = A * Transpose(B)
Calculations are done in 1.10.21 fixed-point format for the final output,
just before there's a shift down to drop the fractional parts.
|
void |
CGBMV(int TransA,
int KL,
int KU,
Float2 alpha,
Allocation A,
Allocation X,
int incX,
Float2 beta,
Allocation Y,
int incY)
CGBMV performs one of the matrix-vector operations
y := alpha*A*x + beta*y or y := alpha*A**T*x + beta*y or y := alpha*A**H*x + beta*y
Details: http://www.netlib.org/lapack/explore-html/d0/d75/cgbmv_8f.html
Note: For a M*N matrix, the input Allocation should also be of size M*N (dimY = M, dimX = N),
but only the region M*(KL+KU+1) will be referenced.
|
void |
CGEMM(int TransA,
int TransB,
Float2 alpha,
Allocation A,
Allocation B,
Float2 beta,
Allocation C)
CGEMM performs one of the matrix-matrix operations
C := alpha*op(A)*op(B) + beta*C where op(X) is one of op(X) = X or op(X) = X**T or op(X) = X**H
Details: http://www.netlib.org/lapack/explore-html/d6/d5b/cgemm_8f.html
|
void |
CGEMV(int TransA,
Float2 alpha,
Allocation A,
Allocation X,
int incX,
Float2 beta,
Allocation Y,
int incY)
CGEMV performs one of the matrix-vector operations
y := alpha*A*x + beta*y or y := alpha*A**T*x + beta*y or y := alpha*A**H*x + beta*y
Details: http://www.netlib.org/lapack/explore-html/d4/d8a/cgemv_8f.html
|
void |
CGERC(Float2 alpha,
Allocation X,
int incX,
Allocation Y,
int incY,
Allocation A)
CGERC performs the rank 1 operation
A := alpha*x*y**H + A
Details: http://www.netlib.org/lapack/explore-html/dd/d84/cgerc_8f.html
|
void |
CGERU(Float2 alpha,
Allocation X,
int incX,
Allocation Y,
int incY,
Allocation A)
CGERU performs the rank 1 operation
A := alpha*x*y**T + A
Details: http://www.netlib.org/lapack/explore-html/db/d5f/cgeru_8f.html
|
void |
CHBMV(int Uplo,
int K,
Float2 alpha,
Allocation A,
Allocation X,
int incX,
Float2 beta,
Allocation Y,
int incY)
CHBMV performs the matrix-vector operation
y := alpha*A*x + beta*y
Details: http://www.netlib.org/lapack/explore-html/db/dc2/chbmv_8f.html
Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N),
but only the region N*(K+1) will be referenced.
|
void |
CHEMM(int Side,
int Uplo,
Float2 alpha,
Allocation A,
Allocation B,
Float2 beta,
Allocation C)
CHEMM performs one of the matrix-matrix operations
C := alpha*A*B + beta*C or C := alpha*B*A + beta*C
Details: http://www.netlib.org/lapack/explore-html/d3/d66/chemm_8f.html
|
void |
CHEMV(int Uplo,
Float2 alpha,
Allocation A,
Allocation X,
int incX,
Float2 beta,
Allocation Y,
int incY)
CHEMV performs the matrix-vector operation
y := alpha*A*x + beta*y
Details: http://www.netlib.org/lapack/explore-html/d7/d51/chemv_8f.html
|
void |
CHER(int Uplo,
float alpha,
Allocation X,
int incX,
Allocation A)
CHER performs the rank 1 operation
A := alpha*x*x**H + A
Details: http://www.netlib.org/lapack/explore-html/d3/d6d/cher_8f.html
|
void |
CHER2(int Uplo,
Float2 alpha,
Allocation X,
int incX,
Allocation Y,
int incY,
Allocation A)
CHER2 performs the symmetric rank 2 operation
A := alpha*x*y**H + alpha*y*x**H + A
Details: http://www.netlib.org/lapack/explore-html/db/d87/cher2_8f.html
|
void |
CHER2K(int Uplo,
int Trans,
Float2 alpha,
Allocation A,
Allocation B,
float beta,
Allocation C)
CHER2K performs one of the hermitian rank 2k operations
C := alpha*A*B**H + conjg( alpha )*B*A**H + beta*C or C := alpha*A**H*B + conjg( alpha )*B**H*A + beta*C
Details: http://www.netlib.org/lapack/explore-html/d1/d82/cher2k_8f.html
|
void |
CHERK(int Uplo,
int Trans,
float alpha,
Allocation A,
float beta,
Allocation C)
CHERK performs one of the hermitian rank k operations
C := alpha*A*A**H + beta*C or C := alpha*A**H*A + beta*C
Details: http://www.netlib.org/lapack/explore-html/d8/d52/cherk_8f.html
|
void |
CHPMV(int Uplo,
Float2 alpha,
Allocation Ap,
Allocation X,
int incX,
Float2 beta,
Allocation Y,
int incY)
CHPMV performs the matrix-vector operation
y := alpha*A*x + beta*y
Details: http://www.netlib.org/lapack/explore-html/d2/d06/chpmv_8f.html
Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
The following subroutine can is an example showing how to convert a UPPER trianglar matrix
'a' to packed matrix 'b'.
|
void |
CHPR(int Uplo,
float alpha,
Allocation X,
int incX,
Allocation Ap)
CHPR performs the rank 1 operation
A := alpha*x*x**H + A
Details: http://www.netlib.org/lapack/explore-html/db/dcd/chpr_8f.html
Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
The following subroutine can is an example showing how to convert a UPPER trianglar matrix
'a' to packed matrix 'b'.
|
void |
CHPR2(int Uplo,
Float2 alpha,
Allocation X,
int incX,
Allocation Y,
int incY,
Allocation Ap)
CHPR2 performs the symmetric rank 2 operation
A := alpha*x*y**H + alpha*y*x**H + A
Details: http://www.netlib.org/lapack/explore-html/d6/d44/chpr2_8f.html
Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
The following subroutine can is an example showing how to convert a UPPER trianglar matrix
'a' to packed matrix 'b'.
|
static ScriptIntrinsicBLAS |
create(RenderScript rs)
Create an intrinsic to access BLAS subroutines.
|
void |
CSYMM(int Side,
int Uplo,
Float2 alpha,
Allocation A,
Allocation B,
Float2 beta,
Allocation C)
CSYMM performs one of the matrix-matrix operations
C := alpha*A*B + beta*C or C := alpha*B*A + beta*C
Details: http://www.netlib.org/lapack/explore-html/db/d59/csymm_8f.html
|
void |
CSYR2K(int Uplo,
int Trans,
Float2 alpha,
Allocation A,
Allocation B,
Float2 beta,
Allocation C)
CSYR2K performs one of the symmetric rank 2k operations
C := alpha*A*B**T + alpha*B*A**T + beta*C or C := alpha*A**T*B + alpha*B**T*A + beta*C
Details: http://www.netlib.org/lapack/explore-html/de/d7e/csyr2k_8f.html
|
void |
CSYRK(int Uplo,
int Trans,
Float2 alpha,
Allocation A,
Float2 beta,
Allocation C)
CSYRK performs one of the symmetric rank k operations
C := alpha*A*A**T + beta*C or C := alpha*A**T*A + beta*C
Details: http://www.netlib.org/lapack/explore-html/d3/d6a/csyrk_8f.html
|
void |
CTBMV(int Uplo,
int TransA,
int Diag,
int K,
Allocation A,
Allocation X,
int incX)
CTBMV performs one of the matrix-vector operations
x := A*x or x := A**T*x or x := A**H*x
Details: http://www.netlib.org/lapack/explore-html/d3/dcd/ctbmv_8f.html
Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N),
but only the region N*(K+1) will be referenced.
|
void |
CTBSV(int Uplo,
int TransA,
int Diag,
int K,
Allocation A,
Allocation X,
int incX)
CTBSV solves one of the systems of equations
A*x = b or A**T*x = b or A**H*x = b
Details: http://www.netlib.org/lapack/explore-html/d9/d5f/ctbsv_8f.html
Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N),
but only the region N*(K+1) will be referenced.
|
void |
CTPMV(int Uplo,
int TransA,
int Diag,
Allocation Ap,
Allocation X,
int incX)
CTPMV performs one of the matrix-vector operations
x := A*x or x := A**T*x or x := A**H*x
Details: http://www.netlib.org/lapack/explore-html/d4/dbb/ctpmv_8f.html
Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
The following subroutine can is an example showing how to convert a UPPER trianglar matrix
'a' to packed matrix 'b'.
|
void |
CTPSV(int Uplo,
int TransA,
int Diag,
Allocation Ap,
Allocation X,
int incX)
CTPSV solves one of the systems of equations
A*x = b or A**T*x = b or A**H*x = b
Details: http://www.netlib.org/lapack/explore-html/d8/d56/ctpsv_8f.html
Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
The following subroutine can is an example showing how to convert a UPPER trianglar matrix
'a' to packed matrix 'b'.
|
void |
CTRMM(int Side,
int Uplo,
int TransA,
int Diag,
Float2 alpha,
Allocation A,
Allocation B)
CTRMM performs one of the matrix-matrix operations
B := alpha*op(A)*B or B := alpha*B*op(A)
op(A) is one of op(A) = A or op(A) = A**T or op(A) = A**H
Details: http://www.netlib.org/lapack/explore-html/d4/d9b/ctrmm_8f.html
|
void |
CTRMV(int Uplo,
int TransA,
int Diag,
Allocation A,
Allocation X,
int incX)
CTRMV performs one of the matrix-vector operations
x := A*x or x := A**T*x or x := A**H*x
Details: http://www.netlib.org/lapack/explore-html/df/d78/ctrmv_8f.html
|
void |
CTRSM(int Side,
int Uplo,
int TransA,
int Diag,
Float2 alpha,
Allocation A,
Allocation B)
CTRSM solves one of the matrix equations
op(A)*X := alpha*B or X*op(A) := alpha*B
op(A) is one of op(A) = A or op(A) = A**T or op(A) = A**H
Details: http://www.netlib.org/lapack/explore-html/de/d30/ctrsm_8f.html
|
void |
CTRSV(int Uplo,
int TransA,
int Diag,
Allocation A,
Allocation X,
int incX)
CTRSV solves one of the systems of equations
A*x = b or A**T*x = b or A**H*x = b
Details: http://www.netlib.org/lapack/explore-html/d4/dc8/ctrsv_8f.html
|
void |
DGBMV(int TransA,
int KL,
int KU,
double alpha,
Allocation A,
Allocation X,
int incX,
double beta,
Allocation Y,
int incY)
DGBMV performs one of the matrix-vector operations
y := alpha*A*x + beta*y or y := alpha*A**T*x + beta*y
Details: http://www.netlib.org/lapack/explore-html/d2/d3f/dgbmv_8f.html
Note: For a M*N matrix, the input Allocation should also be of size M*N (dimY = M, dimX = N),
but only the region M*(KL+KU+1) will be referenced.
|
void |
DGEMM(int TransA,
int TransB,
double alpha,
Allocation A,
Allocation B,
double beta,
Allocation C)
DGEMM performs one of the matrix-matrix operations
C := alpha*op(A)*op(B) + beta*C where op(X) is one of op(X) = X or op(X) = X**T
Details: http://www.netlib.org/lapack/explore-html/d7/d2b/dgemm_8f.html
|
void |
DGEMV(int TransA,
double alpha,
Allocation A,
Allocation X,
int incX,
double beta,
Allocation Y,
int incY)
DGEMV performs one of the matrix-vector operations
y := alpha*A*x + beta*y or y := alpha*A**T*x + beta*y
Details: http://www.netlib.org/lapack/explore-html/dc/da8/dgemv_8f.html
|
void |
DGER(double alpha,
Allocation X,
int incX,
Allocation Y,
int incY,
Allocation A)
DGER performs the rank 1 operation
A := alpha*x*y**T + A
Details: http://www.netlib.org/lapack/explore-html/dc/da8/dger_8f.html
|
void |
DSBMV(int Uplo,
int K,
double alpha,
Allocation A,
Allocation X,
int incX,
double beta,
Allocation Y,
int incY)
DSBMV performs the matrix-vector operation
y := alpha*A*x + beta*y
Details: http://www.netlib.org/lapack/explore-html/d8/d1e/dsbmv_8f.html
Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N),
but only the region N*(K+1) will be referenced.
|
void |
DSPMV(int Uplo,
double alpha,
Allocation Ap,
Allocation X,
int incX,
double beta,
Allocation Y,
int incY)
DSPMV performs the matrix-vector operation
y := alpha*A*x + beta*y
Details: http://www.netlib.org/lapack/explore-html/d4/d85/dspmv_8f.html
Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
The following subroutine can is an example showing how to convert a UPPER trianglar matrix
'a' to packed matrix 'b'.
|
void |
DSPR(int Uplo,
double alpha,
Allocation X,
int incX,
Allocation Ap)
DSPR performs the rank 1 operation
A := alpha*x*x**T + A
Details: http://www.netlib.org/lapack/explore-html/dd/dba/dspr_8f.html
Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
The following subroutine can is an example showing how to convert a UPPER trianglar matrix
'a' to packed matrix 'b'.
|
void |
DSPR2(int Uplo,
double alpha,
Allocation X,
int incX,
Allocation Y,
int incY,
Allocation Ap)
DSPR2 performs the symmetric rank 2 operation
A := alpha*x*y**T + alpha*y*x**T + A
Details: http://www.netlib.org/lapack/explore-html/dd/d9e/dspr2_8f.html
Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
The following subroutine can is an example showing how to convert a UPPER trianglar matrix
'a' to packed matrix 'b'.
|
void |
DSYMM(int Side,
int Uplo,
double alpha,
Allocation A,
Allocation B,
double beta,
Allocation C)
DSYMM performs one of the matrix-matrix operations
C := alpha*A*B + beta*C or C := alpha*B*A + beta*C
Details: http://www.netlib.org/lapack/explore-html/d8/db0/dsymm_8f.html
|
void |
DSYMV(int Uplo,
double alpha,
Allocation A,
Allocation X,
int incX,
double beta,
Allocation Y,
int incY)
DSYMV performs the matrix-vector operation
y := alpha*A*x + beta*y
Details: http://www.netlib.org/lapack/explore-html/d8/dbe/dsymv_8f.html
|
void |
DSYR(int Uplo,
double alpha,
Allocation X,
int incX,
Allocation A)
DSYR performs the rank 1 operation
A := alpha*x*x**T + A
Details: http://www.netlib.org/lapack/explore-html/d3/d60/dsyr_8f.html
|
void |
DSYR2(int Uplo,
double alpha,
Allocation X,
int incX,
Allocation Y,
int incY,
Allocation A)
DSYR2 performs the symmetric rank 2 operation
A := alpha*x*y**T + alpha*y*x**T + A
Details: http://www.netlib.org/lapack/explore-html/de/d41/dsyr2_8f.html
|
void |
DSYR2K(int Uplo,
int Trans,
double alpha,
Allocation A,
Allocation B,
double beta,
Allocation C)
DSYR2K performs one of the symmetric rank 2k operations
C := alpha*A*B**T + alpha*B*A**T + beta*C or C := alpha*A**T*B + alpha*B**T*A + beta*C
Details: http://www.netlib.org/lapack/explore-html/d1/dec/dsyr2k_8f.html
|
void |
DSYRK(int Uplo,
int Trans,
double alpha,
Allocation A,
double beta,
Allocation C)
DSYRK performs one of the symmetric rank k operations
C := alpha*A*A**T + beta*C or C := alpha*A**T*A + beta*C
Details: http://www.netlib.org/lapack/explore-html/dc/d05/dsyrk_8f.html
|
void |
DTBMV(int Uplo,
int TransA,
int Diag,
int K,
Allocation A,
Allocation X,
int incX)
DTBMV performs one of the matrix-vector operations
x := A*x or x := A**T*x
Details: http://www.netlib.org/lapack/explore-html/df/d29/dtbmv_8f.html
Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N),
but only the region N*(K+1) will be referenced.
|
void |
DTBSV(int Uplo,
int TransA,
int Diag,
int K,
Allocation A,
Allocation X,
int incX)
DTBSV solves one of the systems of equations
A*x = b or A**T*x = b
Details: http://www.netlib.org/lapack/explore-html/d4/dcf/dtbsv_8f.html
Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N),
but only the region N*(K+1) will be referenced.
|
void |
DTPMV(int Uplo,
int TransA,
int Diag,
Allocation Ap,
Allocation X,
int incX)
DTPMV performs one of the matrix-vector operations
x := A*x or x := A**T*x
Details: http://www.netlib.org/lapack/explore-html/dc/dcd/dtpmv_8f.html
Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
The following subroutine can is an example showing how to convert a UPPER trianglar matrix
'a' to packed matrix 'b'.
|
void |
DTPSV(int Uplo,
int TransA,
int Diag,
Allocation Ap,
Allocation X,
int incX)
DTPSV solves one of the systems of equations
A*x = b or A**T*x = b
Details: http://www.netlib.org/lapack/explore-html/d9/d84/dtpsv_8f.html
Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
The following subroutine can is an example showing how to convert a UPPER trianglar matrix
'a' to packed matrix 'b'.
|
void |
DTRMM(int Side,
int Uplo,
int TransA,
int Diag,
double alpha,
Allocation A,
Allocation B)
DTRMM performs one of the matrix-matrix operations
B := alpha*op(A)*B or B := alpha*B*op(A)
op(A) is one of op(A) = A or op(A) = A**T
Details: http://www.netlib.org/lapack/explore-html/dd/d19/dtrmm_8f.html
|
void |
DTRMV(int Uplo,
int TransA,
int Diag,
Allocation A,
Allocation X,
int incX)
DTRMV performs one of the matrix-vector operations
x := A*x or x := A**T*x
Details: http://www.netlib.org/lapack/explore-html/dc/d7e/dtrmv_8f.html
|
void |
DTRSM(int Side,
int Uplo,
int TransA,
int Diag,
double alpha,
Allocation A,
Allocation B)
DTRSM solves one of the matrix equations
op(A)*X := alpha*B or X*op(A) := alpha*B
op(A) is one of op(A) = A or op(A) = A**T
Details: http://www.netlib.org/lapack/explore-html/de/da7/dtrsm_8f.html
|
void |
DTRSV(int Uplo,
int TransA,
int Diag,
Allocation A,
Allocation X,
int incX)
DTRSV solves one of the systems of equations
A*x = b or A**T*x = b
Details: http://www.netlib.org/lapack/explore-html/d6/d96/dtrsv_8f.html
|
void |
SGBMV(int TransA,
int KL,
int KU,
float alpha,
Allocation A,
Allocation X,
int incX,
float beta,
Allocation Y,
int incY)
SGBMV performs one of the matrix-vector operations
y := alpha*A*x + beta*y or y := alpha*A**T*x + beta*y
Details: http://www.netlib.org/lapack/explore-html/d6/d46/sgbmv_8f.html
Note: For a M*N matrix, the input Allocation should also be of size M*N (dimY = M, dimX = N),
but only the region M*(KL+KU+1) will be referenced.
|
void |
SGEMM(int TransA,
int TransB,
float alpha,
Allocation A,
Allocation B,
float beta,
Allocation C)
SGEMM performs one of the matrix-matrix operations
C := alpha*op(A)*op(B) + beta*C where op(X) is one of op(X) = X or op(X) = X**T
Details: http://www.netlib.org/lapack/explore-html/d4/de2/sgemm_8f.html
|
void |
SGEMV(int TransA,
float alpha,
Allocation A,
Allocation X,
int incX,
float beta,
Allocation Y,
int incY)
SGEMV performs one of the matrix-vector operations
y := alpha*A*x + beta*y or y := alpha*A**T*x + beta*y
Details: http://www.netlib.org/lapack/explore-html/db/d58/sgemv_8f.html
|
void |
SGER(float alpha,
Allocation X,
int incX,
Allocation Y,
int incY,
Allocation A)
SGER performs the rank 1 operation
A := alpha*x*y**T + A
Details: http://www.netlib.org/lapack/explore-html/db/d5c/sger_8f.html
|
void |
SSBMV(int Uplo,
int K,
float alpha,
Allocation A,
Allocation X,
int incX,
float beta,
Allocation Y,
int incY)
SSBMV performs the matrix-vector operation
y := alpha*A*x + beta*y
Details: http://www.netlib.org/lapack/explore-html/d3/da1/ssbmv_8f.html
Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N),
but only the region N*(K+1) will be referenced.
|
void |
SSPMV(int Uplo,
float alpha,
Allocation Ap,
Allocation X,
int incX,
float beta,
Allocation Y,
int incY)
SSPMV performs the matrix-vector operation
y := alpha*A*x + beta*y
Details: http://www.netlib.org/lapack/explore-html/d8/d68/sspmv_8f.html
Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
The following subroutine can is an example showing how to convert a UPPER trianglar matrix
'a' to packed matrix 'b'.
|
void |
SSPR(int Uplo,
float alpha,
Allocation X,
int incX,
Allocation Ap)
SSPR performs the rank 1 operation
A := alpha*x*x**T + A
Details: http://www.netlib.org/lapack/explore-html/d2/d9b/sspr_8f.html
Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
The following subroutine can is an example showing how to convert a UPPER trianglar matrix
'a' to packed matrix 'b'.
|
void |
SSPR2(int Uplo,
float alpha,
Allocation X,
int incX,
Allocation Y,
int incY,
Allocation Ap)
SSPR2 performs the symmetric rank 2 operation
A := alpha*x*y**T + alpha*y*x**T + A
Details: http://www.netlib.org/lapack/explore-html/db/d3e/sspr2_8f.html
Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
The following subroutine can is an example showing how to convert a UPPER trianglar matrix
'a' to packed matrix 'b'.
|
void |
SSYMM(int Side,
int Uplo,
float alpha,
Allocation A,
Allocation B,
float beta,
Allocation C)
SSYMM performs one of the matrix-matrix operations
C := alpha*A*B + beta*C or C := alpha*B*A + beta*C
Details: http://www.netlib.org/lapack/explore-html/d7/d42/ssymm_8f.html
|
void |
SSYMV(int Uplo,
float alpha,
Allocation A,
Allocation X,
int incX,
float beta,
Allocation Y,
int incY)
SSYMV performs the matrix-vector operation
y := alpha*A*x + beta*y
Details: http://www.netlib.org/lapack/explore-html/d2/d94/ssymv_8f.html
|
void |
SSYR(int Uplo,
float alpha,
Allocation X,
int incX,
Allocation A)
SSYR performs the rank 1 operation
A := alpha*x*x**T + A
Details: http://www.netlib.org/lapack/explore-html/d6/dac/ssyr_8f.html
|
void |
SSYR2(int Uplo,
float alpha,
Allocation X,
int incX,
Allocation Y,
int incY,
Allocation A)
SSYR2 performs the symmetric rank 2 operation
A := alpha*x*y**T + alpha*y*x**T + A
Details: http://www.netlib.org/lapack/explore-html/db/d99/ssyr2_8f.html
|
void |
SSYR2K(int Uplo,
int Trans,
float alpha,
Allocation A,
Allocation B,
float beta,
Allocation C)
SSYR2K performs one of the symmetric rank 2k operations
C := alpha*A*B**T + alpha*B*A**T + beta*C or C := alpha*A**T*B + alpha*B**T*A + beta*C
Details: http://www.netlib.org/lapack/explore-html/df/d3d/ssyr2k_8f.html
|
void |
SSYRK(int Uplo,
int Trans,
float alpha,
Allocation A,
float beta,
Allocation C)
SSYRK performs one of the symmetric rank k operations
C := alpha*A*A**T + beta*C or C := alpha*A**T*A + beta*C
Details: http://www.netlib.org/lapack/explore-html/d0/d40/ssyrk_8f.html
|
void |
STBMV(int Uplo,
int TransA,
int Diag,
int K,
Allocation A,
Allocation X,
int incX)
STBMV performs one of the matrix-vector operations
x := A*x or x := A**T*x
Details: http://www.netlib.org/lapack/explore-html/d6/d7d/stbmv_8f.html
Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N),
but only the region N*(K+1) will be referenced.
|
void |
STBSV(int Uplo,
int TransA,
int Diag,
int K,
Allocation A,
Allocation X,
int incX)
STBSV solves one of the systems of equations
A*x = b or A**T*x = b
Details: http://www.netlib.org/lapack/explore-html/d0/d1f/stbsv_8f.html
Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N),
but only the region N*(K+1) will be referenced.
|
void |
STPMV(int Uplo,
int TransA,
int Diag,
Allocation Ap,
Allocation X,
int incX)
STPMV performs one of the matrix-vector operations
x := A*x or x := A**T*x
Details: http://www.netlib.org/lapack/explore-html/db/db1/stpmv_8f.html
Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
The following subroutine can is an example showing how to convert a UPPER trianglar matrix
'a' to packed matrix 'b'.
|
void |
STPSV(int Uplo,
int TransA,
int Diag,
Allocation Ap,
Allocation X,
int incX)
STPSV solves one of the systems of equations
A*x = b or A**T*x = b
Details: http://www.netlib.org/lapack/explore-html/d0/d7c/stpsv_8f.html
Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
The following subroutine can is an example showing how to convert a UPPER trianglar matrix
'a' to packed matrix 'b'.
|
void |
STRMM(int Side,
int Uplo,
int TransA,
int Diag,
float alpha,
Allocation A,
Allocation B)
STRMM performs one of the matrix-matrix operations
B := alpha*op(A)*B or B := alpha*B*op(A)
op(A) is one of op(A) = A or op(A) = A**T
Details: http://www.netlib.org/lapack/explore-html/df/d01/strmm_8f.html
|
void |
STRMV(int Uplo,
int TransA,
int Diag,
Allocation A,
Allocation X,
int incX)
STRMV performs one of the matrix-vector operations
x := A*x or x := A**T*x
Details: http://www.netlib.org/lapack/explore-html/de/d45/strmv_8f.html
|
void |
STRSM(int Side,
int Uplo,
int TransA,
int Diag,
float alpha,
Allocation A,
Allocation B)
STRSM solves one of the matrix equations
op(A)*X := alpha*B or X*op(A) := alpha*B
op(A) is one of op(A) = A or op(A) = A**T
Details: http://www.netlib.org/lapack/explore-html/d2/d8b/strsm_8f.html
|
void |
STRSV(int Uplo,
int TransA,
int Diag,
Allocation A,
Allocation X,
int incX)
STRSV solves one of the systems of equations
A*x = b or A**T*x = b
Details: http://www.netlib.org/lapack/explore-html/d0/d2a/strsv_8f.html
|
void |
ZGBMV(int TransA,
int KL,
int KU,
Double2 alpha,
Allocation A,
Allocation X,
int incX,
Double2 beta,
Allocation Y,
int incY)
ZGBMV performs one of the matrix-vector operations
y := alpha*A*x + beta*y or y := alpha*A**T*x + beta*y or y := alpha*A**H*x + beta*y
Details: http://www.netlib.org/lapack/explore-html/d9/d46/zgbmv_8f.html
Note: For a M*N matrix, the input Allocation should also be of size M*N (dimY = M, dimX = N),
but only the region M*(KL+KU+1) will be referenced.
|
void |
ZGEMM(int TransA,
int TransB,
Double2 alpha,
Allocation A,
Allocation B,
Double2 beta,
Allocation C)
ZGEMM performs one of the matrix-matrix operations
C := alpha*op(A)*op(B) + beta*C where op(X) is one of op(X) = X or op(X) = X**T or op(X) = X**H
Details: http://www.netlib.org/lapack/explore-html/d7/d76/zgemm_8f.html
|
void |
ZGEMV(int TransA,
Double2 alpha,
Allocation A,
Allocation X,
int incX,
Double2 beta,
Allocation Y,
int incY)
ZGEMV performs one of the matrix-vector operations
y := alpha*A*x + beta*y or y := alpha*A**T*x + beta*y or y := alpha*A**H*x + beta*y
Details: http://www.netlib.org/lapack/explore-html/db/d40/zgemv_8f.html
|
void |
ZGERC(Double2 alpha,
Allocation X,
int incX,
Allocation Y,
int incY,
Allocation A)
ZGERC performs the rank 1 operation
A := alpha*x*y**H + A
Details: http://www.netlib.org/lapack/explore-html/d3/dad/zgerc_8f.html
|
void |
ZGERU(Double2 alpha,
Allocation X,
int incX,
Allocation Y,
int incY,
Allocation A)
ZGERU performs the rank 1 operation
A := alpha*x*y**T + A
Details: http://www.netlib.org/lapack/explore-html/d7/d12/zgeru_8f.html
|
void |
ZHBMV(int Uplo,
int K,
Double2 alpha,
Allocation A,
Allocation X,
int incX,
Double2 beta,
Allocation Y,
int incY)
ZHBMV performs the matrix-vector operation
y := alpha*A*x + beta*y
Details: http://www.netlib.org/lapack/explore-html/d3/d1a/zhbmv_8f.html
Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N),
but only the region N*(K+1) will be referenced.
|
void |
ZHEMM(int Side,
int Uplo,
Double2 alpha,
Allocation A,
Allocation B,
Double2 beta,
Allocation C)
ZHEMM performs one of the matrix-matrix operations
C := alpha*A*B + beta*C or C := alpha*B*A + beta*C
Details: http://www.netlib.org/lapack/explore-html/d6/d3e/zhemm_8f.html
|
void |
ZHEMV(int Uplo,
Double2 alpha,
Allocation A,
Allocation X,
int incX,
Double2 beta,
Allocation Y,
int incY)
ZHEMV performs the matrix-vector operation
y := alpha*A*x + beta*y
Details: http://www.netlib.org/lapack/explore-html/d0/ddd/zhemv_8f.html
|
void |
ZHER(int Uplo,
double alpha,
Allocation X,
int incX,
Allocation A)
ZHER performs the rank 1 operation
A := alpha*x*x**H + A
Details: http://www.netlib.org/lapack/explore-html/de/d0e/zher_8f.html
|
void |
ZHER2(int Uplo,
Double2 alpha,
Allocation X,
int incX,
Allocation Y,
int incY,
Allocation A)
ZHER2 performs the symmetric rank 2 operation
A := alpha*x*y**H + alpha*y*x**H + A
Details: http://www.netlib.org/lapack/explore-html/da/d8a/zher2_8f.html
|
void |
ZHER2K(int Uplo,
int Trans,
Double2 alpha,
Allocation A,
Allocation B,
double beta,
Allocation C)
ZHER2K performs one of the hermitian rank 2k operations
C := alpha*A*B**H + conjg( alpha )*B*A**H + beta*C or C := alpha*A**H*B + conjg( alpha )*B**H*A + beta*C
Details: http://www.netlib.org/lapack/explore-html/d7/dfa/zher2k_8f.html
|
void |
ZHERK(int Uplo,
int Trans,
double alpha,
Allocation A,
double beta,
Allocation C)
ZHERK performs one of the hermitian rank k operations
C := alpha*A*A**H + beta*C or C := alpha*A**H*A + beta*C
Details: http://www.netlib.org/lapack/explore-html/d1/db1/zherk_8f.html
|
void |
ZHPMV(int Uplo,
Double2 alpha,
Allocation Ap,
Allocation X,
int incX,
Double2 beta,
Allocation Y,
int incY)
ZHPMV performs the matrix-vector operation
y := alpha*A*x + beta*y
Details: http://www.netlib.org/lapack/explore-html/d0/d60/zhpmv_8f.html
Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
The following subroutine can is an example showing how to convert a UPPER trianglar matrix
'a' to packed matrix 'b'.
|
void |
ZHPR(int Uplo,
double alpha,
Allocation X,
int incX,
Allocation Ap)
ZHPR performs the rank 1 operation
A := alpha*x*x**H + A
Details: http://www.netlib.org/lapack/explore-html/de/de1/zhpr_8f.html
Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
The following subroutine can is an example showing how to convert a UPPER trianglar matrix
'a' to packed matrix 'b'.
|
void |
ZHPR2(int Uplo,
Double2 alpha,
Allocation X,
int incX,
Allocation Y,
int incY,
Allocation Ap)
ZHPR2 performs the symmetric rank 2 operation
A := alpha*x*y**H + alpha*y*x**H + A
Details: http://www.netlib.org/lapack/explore-html/d5/d52/zhpr2_8f.html
Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
The following subroutine can is an example showing how to convert a UPPER trianglar matrix
'a' to packed matrix 'b'.
|
void |
ZSYMM(int Side,
int Uplo,
Double2 alpha,
Allocation A,
Allocation B,
Double2 beta,
Allocation C)
ZSYMM performs one of the matrix-matrix operations
C := alpha*A*B + beta*C or C := alpha*B*A + beta*C
Details: http://www.netlib.org/lapack/explore-html/df/d51/zsymm_8f.html
|
void |
ZSYR2K(int Uplo,
int Trans,
Double2 alpha,
Allocation A,
Allocation B,
Double2 beta,
Allocation C)
ZSYR2K performs one of the symmetric rank 2k operations
C := alpha*A*B**T + alpha*B*A**T + beta*C or C := alpha*A**T*B + alpha*B**T*A + beta*C
Details: http://www.netlib.org/lapack/explore-html/df/d20/zsyr2k_8f.html
|
void |
ZSYRK(int Uplo,
int Trans,
Double2 alpha,
Allocation A,
Double2 beta,
Allocation C)
ZSYRK performs one of the symmetric rank k operations
C := alpha*A*A**T + beta*C or C := alpha*A**T*A + beta*C
Details: http://www.netlib.org/lapack/explore-html/de/d54/zsyrk_8f.html
|
void |
ZTBMV(int Uplo,
int TransA,
int Diag,
int K,
Allocation A,
Allocation X,
int incX)
ZTBMV performs one of the matrix-vector operations
x := A*x or x := A**T*x or x := A**H*x
Details: http://www.netlib.org/lapack/explore-html/d3/d39/ztbmv_8f.html
Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N),
but only the region N*(K+1) will be referenced.
|
void |
ZTBSV(int Uplo,
int TransA,
int Diag,
int K,
Allocation A,
Allocation X,
int incX)
ZTBSV solves one of the systems of equations
A*x = b or A**T*x = b or A**H*x = b
Details: http://www.netlib.org/lapack/explore-html/d4/d5a/ztbsv_8f.html
Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N),
but only the region N*(K+1) will be referenced.
|
void |
ZTPMV(int Uplo,
int TransA,
int Diag,
Allocation Ap,
Allocation X,
int incX)
ZTPMV performs one of the matrix-vector operations
x := A*x or x := A**T*x or x := A**H*x
Details: http://www.netlib.org/lapack/explore-html/d2/d9e/ztpmv_8f.html
Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
The following subroutine can is an example showing how to convert a UPPER trianglar matrix
'a' to packed matrix 'b'.
|
void |
ZTPSV(int Uplo,
int TransA,
int Diag,
Allocation Ap,
Allocation X,
int incX)
ZTPSV solves one of the systems of equations
A*x = b or A**T*x = b or A**H*x = b
Details: http://www.netlib.org/lapack/explore-html/da/d57/ztpsv_8f.html
Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
The following subroutine can is an example showing how to convert a UPPER trianglar matrix
'a' to packed matrix 'b'.
|
void |
ZTRMM(int Side,
int Uplo,
int TransA,
int Diag,
Double2 alpha,
Allocation A,
Allocation B)
ZTRMM performs one of the matrix-matrix operations
B := alpha*op(A)*B or B := alpha*B*op(A)
op(A) is one of op(A) = A or op(A) = A**T or op(A) = A**H
Details: http://www.netlib.org/lapack/explore-html/d8/de1/ztrmm_8f.html
|
void |
ZTRMV(int Uplo,
int TransA,
int Diag,
Allocation A,
Allocation X,
int incX)
ZTRMV performs one of the matrix-vector operations
x := A*x or x := A**T*x or x := A**H*x
Details: http://www.netlib.org/lapack/explore-html/d0/dd1/ztrmv_8f.html
|
void |
ZTRSM(int Side,
int Uplo,
int TransA,
int Diag,
Double2 alpha,
Allocation A,
Allocation B)
ZTRSM solves one of the matrix equations
op(A)*X := alpha*B or X*op(A) := alpha*B
op(A) is one of op(A) = A or op(A) = A**T or op(A) = A**H
Details: http://www.netlib.org/lapack/explore-html/d1/d39/ztrsm_8f.html
|
void |
ZTRSV(int Uplo,
int TransA,
int Diag,
Allocation A,
Allocation X,
int incX)
ZTRSV solves one of the systems of equations
A*x = b or A**T*x = b or A**H*x = b
Details: http://www.netlib.org/lapack/explore-html/d1/d2f/ztrsv_8f.html
|
bindAllocation, createFieldID, createInvokeID, createKernelID, forEach, forEach, forEach, forEach, getVarB, getVarD, getVarF, getVarI, getVarJ, getVarV, invoke, invoke, reduce, setTimeZone, setVar, setVar, setVar, setVar, setVar, setVar, setVar, setVar
public static final int NO_TRANSPOSE
public static final int TRANSPOSE
public static final int CONJ_TRANSPOSE
public static final int UPPER
public static final int LOWER
public static final int NON_UNIT
public static final int UNIT
public static final int LEFT
public static final int RIGHT
public static ScriptIntrinsicBLAS create(RenderScript rs)
rs
- The RenderScript contextpublic void SGEMV(int TransA, float alpha, Allocation A, Allocation X, int incX, float beta, Allocation Y, int incY)
TransA
- The type of transpose applied to matrix A.alpha
- The scalar alpha.A
- The input allocation contains matrix A, supported elements type Element.F32(android.renderscript.RenderScript)
.X
- The input allocation contains vector x, supported elements type Element.F32(android.renderscript.RenderScript)
.incX
- The increment for the elements of vector x, must be larger than zero.beta
- The scalar beta.Y
- The input allocation contains vector y, supported elements type Element.F32(android.renderscript.RenderScript)
.incY
- The increment for the elements of vector y, must be larger than zero.public void DGEMV(int TransA, double alpha, Allocation A, Allocation X, int incX, double beta, Allocation Y, int incY)
TransA
- The type of transpose applied to matrix A.alpha
- The scalar alpha.A
- The input allocation contains matrix A, supported elements type Element.F64(android.renderscript.RenderScript)
.X
- The input allocation contains vector x, supported elements type Element.F64(android.renderscript.RenderScript)
.incX
- The increment for the elements of vector x, must be larger than zero.beta
- The scalar beta.Y
- The input allocation contains vector y, supported elements type Element.F64(android.renderscript.RenderScript)
.incY
- The increment for the elements of vector y, must be larger than zero.public void CGEMV(int TransA, Float2 alpha, Allocation A, Allocation X, int incX, Float2 beta, Allocation Y, int incY)
TransA
- The type of transpose applied to matrix A.alpha
- The scalar alpha.A
- The input allocation contains matrix A, supported elements type Element.F32_2(android.renderscript.RenderScript)
.X
- The input allocation contains vector x, supported elements type Element.F32_2(android.renderscript.RenderScript)
.incX
- The increment for the elements of vector x, must be larger than zero.beta
- The scalar beta.Y
- The input allocation contains vector y, supported elements type Element.F32_2(android.renderscript.RenderScript)
.incY
- The increment for the elements of vector y, must be larger than zero.public void ZGEMV(int TransA, Double2 alpha, Allocation A, Allocation X, int incX, Double2 beta, Allocation Y, int incY)
TransA
- The type of transpose applied to matrix A.alpha
- The scalar alpha.A
- The input allocation contains matrix A, supported elements type Element.F64_2(android.renderscript.RenderScript)
.X
- The input allocation contains vector x, supported elements type Element.F64_2(android.renderscript.RenderScript)
.incX
- The increment for the elements of vector x, must be larger than zero.beta
- The scalar beta.Y
- The input allocation contains vector y, supported elements type Element.F64_2(android.renderscript.RenderScript)
.incY
- The increment for the elements of vector y, must be larger than zero.public void SGBMV(int TransA, int KL, int KU, float alpha, Allocation A, Allocation X, int incX, float beta, Allocation Y, int incY)
TransA
- The type of transpose applied to matrix A.KL
- The number of sub-diagonals of the matrix A.KU
- The number of super-diagonals of the matrix A.alpha
- The scalar alpha.A
- The input allocation contains the band matrix A, supported elements type Element.F32(android.renderscript.RenderScript)
.X
- The input allocation contains vector x, supported elements type Element.F32(android.renderscript.RenderScript)
.incX
- The increment for the elements of vector x, must be larger than zero.beta
- The scalar beta.Y
- The input allocation contains vector y, supported elements type Element.F32(android.renderscript.RenderScript)
.incY
- The increment for the elements of vector y, must be larger than zero.public void DGBMV(int TransA, int KL, int KU, double alpha, Allocation A, Allocation X, int incX, double beta, Allocation Y, int incY)
TransA
- The type of transpose applied to matrix A.KL
- The number of sub-diagonals of the matrix A.KU
- The number of super-diagonals of the matrix A.alpha
- The scalar alpha.A
- The input allocation contains the band matrix A, supported elements type Element.F64(android.renderscript.RenderScript)
.X
- The input allocation contains vector x, supported elements type Element.F64(android.renderscript.RenderScript)
.incX
- The increment for the elements of vector x, must be larger than zero.beta
- The scalar beta.Y
- The input allocation contains vector y, supported elements type Element.F64(android.renderscript.RenderScript)
.incY
- The increment for the elements of vector y, must be larger than zero.public void CGBMV(int TransA, int KL, int KU, Float2 alpha, Allocation A, Allocation X, int incX, Float2 beta, Allocation Y, int incY)
TransA
- The type of transpose applied to matrix A.KL
- The number of sub-diagonals of the matrix A.KU
- The number of super-diagonals of the matrix A.alpha
- The scalar alpha.A
- The input allocation contains the band matrix A, supported elements type Element.F32_2(android.renderscript.RenderScript)
.X
- The input allocation contains vector x, supported elements type Element.F32_2(android.renderscript.RenderScript)
.incX
- The increment for the elements of vector x, must be larger than zero.beta
- The scalar beta.Y
- The input allocation contains vector y, supported elements type Element.F32_2(android.renderscript.RenderScript)
.incY
- The increment for the elements of vector y, must be larger than zero.public void ZGBMV(int TransA, int KL, int KU, Double2 alpha, Allocation A, Allocation X, int incX, Double2 beta, Allocation Y, int incY)
TransA
- The type of transpose applied to matrix A.KL
- The number of sub-diagonals of the matrix A.KU
- The number of super-diagonals of the matrix A.alpha
- The scalar alpha.A
- The input allocation contains the band matrix A, supported elements type Element.F64_2(android.renderscript.RenderScript)
.X
- The input allocation contains vector x, supported elements type Element.F64_2(android.renderscript.RenderScript)
.incX
- The increment for the elements of vector x, must be larger than zero.beta
- The scalar beta.Y
- The input allocation contains vector y, supported elements type Element.F64_2(android.renderscript.RenderScript)
.incY
- The increment for the elements of vector y, must be larger than zero.public void STRMV(int Uplo, int TransA, int Diag, Allocation A, Allocation X, int incX)
Uplo
- Specifies whether the matrix is an upper or lower triangular matrix.TransA
- The type of transpose applied to matrix A.Diag
- Specifies whether or not A is unit triangular.A
- The input allocation contains matrix A, supported elements type Element.F32(android.renderscript.RenderScript)
.X
- The input allocation contains vector x, supported elements type Element.F32(android.renderscript.RenderScript)
.incX
- The increment for the elements of vector x, must be larger than zero.public void DTRMV(int Uplo, int TransA, int Diag, Allocation A, Allocation X, int incX)
Uplo
- Specifies whether the matrix is an upper or lower triangular matrix.TransA
- The type of transpose applied to matrix A.Diag
- Specifies whether or not A is unit triangular.A
- The input allocation contains matrix A, supported elements type Element.F64(android.renderscript.RenderScript)
.X
- The input allocation contains vector x, supported elements type Element.F64(android.renderscript.RenderScript)
.incX
- The increment for the elements of vector x, must be larger than zero.public void CTRMV(int Uplo, int TransA, int Diag, Allocation A, Allocation X, int incX)
Uplo
- Specifies whether the matrix is an upper or lower triangular matrix.TransA
- The type of transpose applied to matrix A.Diag
- Specifies whether or not A is unit triangular.A
- The input allocation contains matrix A, supported elements type Element.F32_2(android.renderscript.RenderScript)
.X
- The input allocation contains vector x, supported elements type Element.F32_2(android.renderscript.RenderScript)
.incX
- The increment for the elements of vector x, must be larger than zero.public void ZTRMV(int Uplo, int TransA, int Diag, Allocation A, Allocation X, int incX)
Uplo
- Specifies whether the matrix is an upper or lower triangular matrix.TransA
- The type of transpose applied to matrix A.Diag
- Specifies whether or not A is unit triangular.A
- The input allocation contains matrix A, supported elements type Element.F64_2(android.renderscript.RenderScript)
.X
- The input allocation contains vector x, supported elements type Element.F64_2(android.renderscript.RenderScript)
.incX
- The increment for the elements of vector x, must be larger than zero.public void STBMV(int Uplo, int TransA, int Diag, int K, Allocation A, Allocation X, int incX)
Uplo
- Specifies whether the matrix is an upper or lower triangular matrix.TransA
- The type of transpose applied to matrix A.Diag
- Specifies whether or not A is unit triangular.K
- The number of off-diagonals of the matrix AA
- The input allocation contains matrix A, supported elements type Element.F32(android.renderscript.RenderScript)
.X
- The input allocation contains vector x, supported elements type Element.F32(android.renderscript.RenderScript)
.incX
- The increment for the elements of vector x, must be larger than zero.public void DTBMV(int Uplo, int TransA, int Diag, int K, Allocation A, Allocation X, int incX)
Uplo
- Specifies whether the matrix is an upper or lower triangular matrix.TransA
- The type of transpose applied to matrix A.Diag
- Specifies whether or not A is unit triangular.K
- The number of off-diagonals of the matrix AA
- The input allocation contains matrix A, supported elements type Element.F64(android.renderscript.RenderScript)
.X
- The input allocation contains vector x, supported elements type Element.F64(android.renderscript.RenderScript)
.incX
- The increment for the elements of vector x, must be larger than zero.public void CTBMV(int Uplo, int TransA, int Diag, int K, Allocation A, Allocation X, int incX)
Uplo
- Specifies whether the matrix is an upper or lower triangular matrix.TransA
- The type of transpose applied to matrix A.Diag
- Specifies whether or not A is unit triangular.K
- The number of off-diagonals of the matrix AA
- The input allocation contains matrix A, supported elements type Element.F32_2(android.renderscript.RenderScript)
.X
- The input allocation contains vector x, supported elements type Element.F32_2(android.renderscript.RenderScript)
.incX
- The increment for the elements of vector x, must be larger than zero.public void ZTBMV(int Uplo, int TransA, int Diag, int K, Allocation A, Allocation X, int incX)
Uplo
- Specifies whether the matrix is an upper or lower triangular matrix.TransA
- The type of transpose applied to matrix A.Diag
- Specifies whether or not A is unit triangular.K
- The number of off-diagonals of the matrix AA
- The input allocation contains matrix A, supported elements type Element.F64_2(android.renderscript.RenderScript)
.X
- The input allocation contains vector x, supported elements type Element.F64_2(android.renderscript.RenderScript)
.incX
- The increment for the elements of vector x, must be larger than zero.public void STPMV(int Uplo, int TransA, int Diag, Allocation Ap, Allocation X, int incX)
Uplo
- Specifies whether the matrix is an upper or lower triangular matrix.TransA
- The type of transpose applied to matrix A.Diag
- Specifies whether or not A is unit triangular.Ap
- The input allocation contains packed matrix A, supported elements type Element.F32(android.renderscript.RenderScript)
.X
- The input allocation contains vector x, supported elements type Element.F32(android.renderscript.RenderScript)
.incX
- The increment for the elements of vector x, must be larger than zero.public void DTPMV(int Uplo, int TransA, int Diag, Allocation Ap, Allocation X, int incX)
Uplo
- Specifies whether the matrix is an upper or lower triangular matrix.TransA
- The type of transpose applied to matrix A.Diag
- Specifies whether or not A is unit triangular.Ap
- The input allocation contains packed matrix A, supported elements type Element.F64(android.renderscript.RenderScript)
.X
- The input allocation contains vector x, supported elements type Element.F64(android.renderscript.RenderScript)
.incX
- The increment for the elements of vector x, must be larger than zero.public void CTPMV(int Uplo, int TransA, int Diag, Allocation Ap, Allocation X, int incX)
Uplo
- Specifies whether the matrix is an upper or lower triangular matrix.TransA
- The type of transpose applied to matrix A.Diag
- Specifies whether or not A is unit triangular.Ap
- The input allocation contains packed matrix A, supported elements type Element.F32_2(android.renderscript.RenderScript)
.X
- The input allocation contains vector x, supported elements type Element.F32_2(android.renderscript.RenderScript)
.incX
- The increment for the elements of vector x, must be larger than zero.public void ZTPMV(int Uplo, int TransA, int Diag, Allocation Ap, Allocation X, int incX)
Uplo
- Specifies whether the matrix is an upper or lower triangular matrix.TransA
- The type of transpose applied to matrix A.Diag
- Specifies whether or not A is unit triangular.Ap
- The input allocation contains packed matrix A, supported elements type Element.F64_2(android.renderscript.RenderScript)
.X
- The input allocation contains vector x, supported elements type Element.F64_2(android.renderscript.RenderScript)
.incX
- The increment for the elements of vector x, must be larger than zero.public void STRSV(int Uplo, int TransA, int Diag, Allocation A, Allocation X, int incX)
Uplo
- Specifies whether the matrix is an upper or lower triangular matrix.TransA
- The type of transpose applied to matrix A.Diag
- Specifies whether or not A is unit triangular.A
- The input allocation contains matrix A, supported elements type Element.F32(android.renderscript.RenderScript)
.X
- The input allocation contains vector x, supported elements type Element.F32(android.renderscript.RenderScript)
.incX
- The increment for the elements of vector x, must be larger than zero.public void DTRSV(int Uplo, int TransA, int Diag, Allocation A, Allocation X, int incX)
Uplo
- Specifies whether the matrix is an upper or lower triangular matrix.TransA
- The type of transpose applied to matrix A.Diag
- Specifies whether or not A is unit triangular.A
- The input allocation contains matrix A, supported elements type Element.F64(android.renderscript.RenderScript)
.X
- The input allocation contains vector x, supported elements type Element.F64(android.renderscript.RenderScript)
.incX
- The increment for the elements of vector x, must be larger than zero.public void CTRSV(int Uplo, int TransA, int Diag, Allocation A, Allocation X, int incX)
Uplo
- Specifies whether the matrix is an upper or lower triangular matrix.TransA
- The type of transpose applied to matrix A.Diag
- Specifies whether or not A is unit triangular.A
- The input allocation contains matrix A, supported elements type Element.F32_2(android.renderscript.RenderScript)
.X
- The input allocation contains vector x, supported elements type Element.F32_2(android.renderscript.RenderScript)
.incX
- The increment for the elements of vector x, must be larger than zero.public void ZTRSV(int Uplo, int TransA, int Diag, Allocation A, Allocation X, int incX)
Uplo
- Specifies whether the matrix is an upper or lower triangular matrix.TransA
- The type of transpose applied to matrix A.Diag
- Specifies whether or not A is unit triangular.A
- The input allocation contains matrix A, supported elements type Element.F64_2(android.renderscript.RenderScript)
.X
- The input allocation contains vector x, supported elements type Element.F64_2(android.renderscript.RenderScript)
.incX
- The increment for the elements of vector x, must be larger than zero.public void STBSV(int Uplo, int TransA, int Diag, int K, Allocation A, Allocation X, int incX)
Uplo
- Specifies whether the matrix is an upper or lower triangular matrix.TransA
- The type of transpose applied to matrix A.Diag
- Specifies whether or not A is unit triangular.K
- The number of off-diagonals of the matrix AA
- The input allocation contains matrix A, supported elements type Element.F32(android.renderscript.RenderScript)
.X
- The input allocation contains vector x, supported elements type Element.F32(android.renderscript.RenderScript)
.incX
- The increment for the elements of vector x, must be larger than zero.public void DTBSV(int Uplo, int TransA, int Diag, int K, Allocation A, Allocation X, int incX)
Uplo
- Specifies whether the matrix is an upper or lower triangular matrix.TransA
- The type of transpose applied to matrix A.Diag
- Specifies whether or not A is unit triangular.K
- The number of off-diagonals of the matrix AA
- The input allocation contains matrix A, supported elements type Element.F64(android.renderscript.RenderScript)
.X
- The input allocation contains vector x, supported elements type Element.F64(android.renderscript.RenderScript)
.incX
- The increment for the elements of vector x, must be larger than zero.public void CTBSV(int Uplo, int TransA, int Diag, int K, Allocation A, Allocation X, int incX)
Uplo
- Specifies whether the matrix is an upper or lower triangular matrix.TransA
- The type of transpose applied to matrix A.Diag
- Specifies whether or not A is unit triangular.K
- The number of off-diagonals of the matrix AA
- The input allocation contains matrix A, supported elements type Element.F32_2(android.renderscript.RenderScript)
.X
- The input allocation contains vector x, supported elements type Element.F32_2(android.renderscript.RenderScript)
.incX
- The increment for the elements of vector x, must be larger than zero.public void ZTBSV(int Uplo, int TransA, int Diag, int K, Allocation A, Allocation X, int incX)
Uplo
- Specifies whether the matrix is an upper or lower triangular matrix.TransA
- The type of transpose applied to matrix A.Diag
- Specifies whether or not A is unit triangular.K
- The number of off-diagonals of the matrix AA
- The input allocation contains matrix A, supported elements type Element.F64_2(android.renderscript.RenderScript)
.X
- The input allocation contains vector x, supported elements type Element.F64_2(android.renderscript.RenderScript)
.incX
- The increment for the elements of vector x, must be larger than zero.public void STPSV(int Uplo, int TransA, int Diag, Allocation Ap, Allocation X, int incX)
Uplo
- Specifies whether the matrix is an upper or lower triangular matrix.TransA
- The type of transpose applied to matrix A.Diag
- Specifies whether or not A is unit triangular.Ap
- The input allocation contains packed matrix A, supported elements type Element.F32(android.renderscript.RenderScript)
.X
- The input allocation contains vector x, supported elements type Element.F32(android.renderscript.RenderScript)
.incX
- The increment for the elements of vector x, must be larger than zero.public void DTPSV(int Uplo, int TransA, int Diag, Allocation Ap, Allocation X, int incX)
Uplo
- Specifies whether the matrix is an upper or lower triangular matrix.TransA
- The type of transpose applied to matrix A.Diag
- Specifies whether or not A is unit triangular.Ap
- The input allocation contains packed matrix A, supported elements type Element.F64(android.renderscript.RenderScript)
.X
- The input allocation contains vector x, supported elements type Element.F64(android.renderscript.RenderScript)
.incX
- The increment for the elements of vector x, must be larger than zero.public void CTPSV(int Uplo, int TransA, int Diag, Allocation Ap, Allocation X, int incX)
Uplo
- Specifies whether the matrix is an upper or lower triangular matrix.TransA
- The type of transpose applied to matrix A.Diag
- Specifies whether or not A is unit triangular.Ap
- The input allocation contains packed matrix A, supported elements type Element.F32_2(android.renderscript.RenderScript)
.X
- The input allocation contains vector x, supported elements type Element.F32_2(android.renderscript.RenderScript)
.incX
- The increment for the elements of vector x, must be larger than zero.public void ZTPSV(int Uplo, int TransA, int Diag, Allocation Ap, Allocation X, int incX)
Uplo
- Specifies whether the matrix is an upper or lower triangular matrix.TransA
- The type of transpose applied to matrix A.Diag
- Specifies whether or not A is unit triangular.Ap
- The input allocation contains packed matrix A, supported elements type Element.F64_2(android.renderscript.RenderScript)
.X
- The input allocation contains vector x, supported elements type Element.F64_2(android.renderscript.RenderScript)
.incX
- The increment for the elements of vector x, must be larger than zero.public void SSYMV(int Uplo, float alpha, Allocation A, Allocation X, int incX, float beta, Allocation Y, int incY)
Uplo
- Specifies whether the upper or lower triangular part is to be referenced.alpha
- The scalar alpha.A
- The input allocation contains matrix A, supported elements type Element.F32(android.renderscript.RenderScript)
.X
- The input allocation contains vector x, supported elements type Element.F32(android.renderscript.RenderScript)
.incX
- The increment for the elements of vector x, must be larger than zero.beta
- The scalar beta.Y
- The input allocation contains vector y, supported elements type Element.F32(android.renderscript.RenderScript)
.incY
- The increment for the elements of vector y, must be larger than zero.public void SSBMV(int Uplo, int K, float alpha, Allocation A, Allocation X, int incX, float beta, Allocation Y, int incY)
Uplo
- Specifies whether the upper or lower triangular part of the band matrix A is being supplied.K
- The number of off-diagonals of the matrix Aalpha
- The scalar alpha.A
- The input allocation contains matrix A, supported elements type Element.F32(android.renderscript.RenderScript)
.X
- The input allocation contains vector x, supported elements type Element.F32(android.renderscript.RenderScript)
.incX
- The increment for the elements of vector x, must be larger than zero.beta
- The scalar beta.Y
- The input allocation contains vector y, supported elements type Element.F32(android.renderscript.RenderScript)
.incY
- The increment for the elements of vector y, must be larger than zero.public void SSPMV(int Uplo, float alpha, Allocation Ap, Allocation X, int incX, float beta, Allocation Y, int incY)
Uplo
- Specifies whether the upper or lower triangular part of the matrix A is supplied in packed form.alpha
- The scalar alpha.Ap
- The input allocation contains matrix A, supported elements type Element.F32(android.renderscript.RenderScript)
.X
- The input allocation contains vector x, supported elements type Element.F32(android.renderscript.RenderScript)
.incX
- The increment for the elements of vector x, must be larger than zero.beta
- The scalar beta.Y
- The input allocation contains vector y, supported elements type Element.F32(android.renderscript.RenderScript)
.incY
- The increment for the elements of vector y, must be larger than zero.public void SGER(float alpha, Allocation X, int incX, Allocation Y, int incY, Allocation A)
alpha
- The scalar alpha.X
- The input allocation contains vector x, supported elements type Element.F32(android.renderscript.RenderScript)
.incX
- The increment for the elements of vector x, must be larger than zero.Y
- The input allocation contains vector y, supported elements type Element.F32(android.renderscript.RenderScript)
.incY
- The increment for the elements of vector y, must be larger than zero.A
- The input allocation contains matrix A, supported elements type Element.F32(android.renderscript.RenderScript)
.public void SSYR(int Uplo, float alpha, Allocation X, int incX, Allocation A)
Uplo
- Specifies whether the upper or lower triangular part is to be referenced.alpha
- The scalar alpha.X
- The input allocation contains vector x, supported elements type Element.F32(android.renderscript.RenderScript)
.incX
- The increment for the elements of vector x, must be larger than zero.A
- The input allocation contains matrix A, supported elements type Element.F32(android.renderscript.RenderScript)
.public void SSPR(int Uplo, float alpha, Allocation X, int incX, Allocation Ap)
Uplo
- Specifies whether the upper or lower triangular part is to be supplied in the packed form.alpha
- The scalar alpha.X
- The input allocation contains vector x, supported elements type Element.F32(android.renderscript.RenderScript)
.incX
- The increment for the elements of vector x, must be larger than zero.Ap
- The input allocation contains matrix A, supported elements type Element.F32(android.renderscript.RenderScript)
.public void SSYR2(int Uplo, float alpha, Allocation X, int incX, Allocation Y, int incY, Allocation A)
Uplo
- Specifies whether the upper or lower triangular part is to be referenced.alpha
- The scalar alpha.X
- The input allocation contains vector x, supported elements type Element.F32(android.renderscript.RenderScript)
.incX
- The increment for the elements of vector x, must be larger than zero.Y
- The input allocation contains vector y, supported elements type Element.F32(android.renderscript.RenderScript)
.incY
- The increment for the elements of vector y, must be larger than zero.A
- The input allocation contains matrix A, supported elements type Element.F32(android.renderscript.RenderScript)
.public void SSPR2(int Uplo, float alpha, Allocation X, int incX, Allocation Y, int incY, Allocation Ap)
Uplo
- Specifies whether the upper or lower triangular part is to be supplied in the packed form.alpha
- The scalar alpha.X
- The input allocation contains vector x, supported elements type Element.F32(android.renderscript.RenderScript)
.incX
- The increment for the elements of vector x, must be larger than zero.Y
- The input allocation contains vector y, supported elements type Element.F32(android.renderscript.RenderScript)
.incY
- The increment for the elements of vector y, must be larger than zero.Ap
- The input allocation contains matrix A, supported elements type Element.F32(android.renderscript.RenderScript)
.public void DSYMV(int Uplo, double alpha, Allocation A, Allocation X, int incX, double beta, Allocation Y, int incY)
Uplo
- Specifies whether the upper or lower triangular part is to be referenced.alpha
- The scalar alpha.A
- The input allocation contains matrix A, supported elements type Element.F64(android.renderscript.RenderScript)
.X
- The input allocation contains vector x, supported elements type Element.F64(android.renderscript.RenderScript)
.incX
- The increment for the elements of vector x, must be larger than zero.beta
- The scalar beta.Y
- The input allocation contains vector y, supported elements type Element.F64(android.renderscript.RenderScript)
.incY
- The increment for the elements of vector y, must be larger than zero.public void DSBMV(int Uplo, int K, double alpha, Allocation A, Allocation X, int incX, double beta, Allocation Y, int incY)
Uplo
- Specifies whether the upper or lower triangular part of the band matrix A is being supplied.K
- The number of off-diagonals of the matrix Aalpha
- The scalar alpha.A
- The input allocation contains matrix A, supported elements type Element.F64(android.renderscript.RenderScript)
.X
- The input allocation contains vector x, supported elements type Element.F64(android.renderscript.RenderScript)
.incX
- The increment for the elements of vector x, must be larger than zero.beta
- The scalar beta.Y
- The input allocation contains vector y, supported elements type Element.F64(android.renderscript.RenderScript)
.incY
- The increment for the elements of vector y, must be larger than zero.public void DSPMV(int Uplo, double alpha, Allocation Ap, Allocation X, int incX, double beta, Allocation Y, int incY)
Uplo
- Specifies whether the upper or lower triangular part of the matrix A is supplied in packed form.alpha
- The scalar alpha.Ap
- The input allocation contains matrix A, supported elements type Element.F64(android.renderscript.RenderScript)
.X
- The input allocation contains vector x, supported elements type Element.F64(android.renderscript.RenderScript)
.incX
- The increment for the elements of vector x, must be larger than zero.beta
- The scalar beta.Y
- The input allocation contains vector y, supported elements type Element.F64(android.renderscript.RenderScript)
.incY
- The increment for the elements of vector y, must be larger than zero.public void DGER(double alpha, Allocation X, int incX, Allocation Y, int incY, Allocation A)
alpha
- The scalar alpha.X
- The input allocation contains vector x, supported elements type Element.F64(android.renderscript.RenderScript)
.incX
- The increment for the elements of vector x, must be larger than zero.Y
- The input allocation contains vector y, supported elements type Element.F64(android.renderscript.RenderScript)
.incY
- The increment for the elements of vector y, must be larger than zero.A
- The input allocation contains matrix A, supported elements type Element.F64(android.renderscript.RenderScript)
.public void DSYR(int Uplo, double alpha, Allocation X, int incX, Allocation A)
Uplo
- Specifies whether the upper or lower triangular part is to be referenced.alpha
- The scalar alpha.X
- The input allocation contains vector x, supported elements type Element.F64(android.renderscript.RenderScript)
.incX
- The increment for the elements of vector x, must be larger than zero.A
- The input allocation contains matrix A, supported elements type Element.F64(android.renderscript.RenderScript)
.public void DSPR(int Uplo, double alpha, Allocation X, int incX, Allocation Ap)
Uplo
- Specifies whether the upper or lower triangular part is to be supplied in the packed form.alpha
- The scalar alpha.X
- The input allocation contains vector x, supported elements type Element.F64(android.renderscript.RenderScript)
.incX
- The increment for the elements of vector x, must be larger than zero.Ap
- The input allocation contains matrix A, supported elements type Element.F64(android.renderscript.RenderScript)
.public void DSYR2(int Uplo, double alpha, Allocation X, int incX, Allocation Y, int incY, Allocation A)
Uplo
- Specifies whether the upper or lower triangular part is to be referenced.alpha
- The scalar alpha.X
- The input allocation contains vector x, supported elements type Element.F64(android.renderscript.RenderScript)
.incX
- The increment for the elements of vector x, must be larger than zero.Y
- The input allocation contains vector y, supported elements type Element.F64(android.renderscript.RenderScript)
.incY
- The increment for the elements of vector y, must be larger than zero.A
- The input allocation contains matrix A, supported elements type Element.F64(android.renderscript.RenderScript)
.public void DSPR2(int Uplo, double alpha, Allocation X, int incX, Allocation Y, int incY, Allocation Ap)
Uplo
- Specifies whether the upper or lower triangular part is to be supplied in the packed form.alpha
- The scalar alpha.X
- The input allocation contains vector x, supported elements type Element.F64(android.renderscript.RenderScript)
.incX
- The increment for the elements of vector x, must be larger than zero.Y
- The input allocation contains vector y, supported elements type Element.F64(android.renderscript.RenderScript)
.incY
- The increment for the elements of vector y, must be larger than zero.Ap
- The input allocation contains matrix A, supported elements type Element.F64(android.renderscript.RenderScript)
.public void CHEMV(int Uplo, Float2 alpha, Allocation A, Allocation X, int incX, Float2 beta, Allocation Y, int incY)
Uplo
- Specifies whether the upper or lower triangular part is to be referenced.alpha
- The scalar alpha.A
- The input allocation contains matrix A, supported elements type Element.F32_2(android.renderscript.RenderScript)
.X
- The input allocation contains vector x, supported elements type Element.F32_2(android.renderscript.RenderScript)
.incX
- The increment for the elements of vector x, must be larger than zero.beta
- The scalar beta.Y
- The input allocation contains vector y, supported elements type Element.F32_2(android.renderscript.RenderScript)
.incY
- The increment for the elements of vector y, must be larger than zero.public void CHBMV(int Uplo, int K, Float2 alpha, Allocation A, Allocation X, int incX, Float2 beta, Allocation Y, int incY)
Uplo
- Specifies whether the upper or lower triangular part of the band matrix A is being supplied.K
- The number of off-diagonals of the matrix Aalpha
- The scalar alpha.A
- The input allocation contains matrix A, supported elements type Element.F32_2(android.renderscript.RenderScript)
.X
- The input allocation contains vector x, supported elements type Element.F32_2(android.renderscript.RenderScript)
.incX
- The increment for the elements of vector x, must be larger than zero.beta
- The scalar beta.Y
- The input allocation contains vector y, supported elements type Element.F32_2(android.renderscript.RenderScript)
.incY
- The increment for the elements of vector y, must be larger than zero.public void CHPMV(int Uplo, Float2 alpha, Allocation Ap, Allocation X, int incX, Float2 beta, Allocation Y, int incY)
Uplo
- Specifies whether the upper or lower triangular part of the matrix A is supplied in packed form.alpha
- The scalar alpha.Ap
- The input allocation contains matrix A, supported elements type Element.F32_2(android.renderscript.RenderScript)
.X
- The input allocation contains vector x, supported elements type Element.F32_2(android.renderscript.RenderScript)
.incX
- The increment for the elements of vector x, must be larger than zero.beta
- The scalar beta.Y
- The input allocation contains vector y, supported elements type Element.F32_2(android.renderscript.RenderScript)
.incY
- The increment for the elements of vector y, must be larger than zero.public void CGERU(Float2 alpha, Allocation X, int incX, Allocation Y, int incY, Allocation A)
alpha
- The scalar alpha.X
- The input allocation contains vector x, supported elements type Element.F32_2(android.renderscript.RenderScript)
.incX
- The increment for the elements of vector x, must be larger than zero.Y
- The input allocation contains vector y, supported elements type Element.F32_2(android.renderscript.RenderScript)
.incY
- The increment for the elements of vector y, must be larger than zero.A
- The input allocation contains matrix A, supported elements type Element.F32_2(android.renderscript.RenderScript)
.public void CGERC(Float2 alpha, Allocation X, int incX, Allocation Y, int incY, Allocation A)
alpha
- The scalar alpha.X
- The input allocation contains vector x, supported elements type Element.F32_2(android.renderscript.RenderScript)
.incX
- The increment for the elements of vector x, must be larger than zero.Y
- The input allocation contains vector y, supported elements type Element.F32_2(android.renderscript.RenderScript)
.incY
- The increment for the elements of vector y, must be larger than zero.A
- The input allocation contains matrix A, supported elements type Element.F32_2(android.renderscript.RenderScript)
.public void CHER(int Uplo, float alpha, Allocation X, int incX, Allocation A)
Uplo
- Specifies whether the upper or lower triangular part is to be referenced.alpha
- The scalar alpha.X
- The input allocation contains vector x, supported elements type Element.F32_2(android.renderscript.RenderScript)
.incX
- The increment for the elements of vector x, must be larger than zero.A
- The input allocation contains matrix A, supported elements type Element.F32_2(android.renderscript.RenderScript)
.public void CHPR(int Uplo, float alpha, Allocation X, int incX, Allocation Ap)
Uplo
- Specifies whether the upper or lower triangular part is to be supplied in the packed form.alpha
- The scalar alpha.X
- The input allocation contains vector x, supported elements type Element.F32_2(android.renderscript.RenderScript)
.incX
- The increment for the elements of vector x, must be larger than zero.Ap
- The input allocation contains matrix A, supported elements type Element.F32_2(android.renderscript.RenderScript)
.public void CHER2(int Uplo, Float2 alpha, Allocation X, int incX, Allocation Y, int incY, Allocation A)
Uplo
- Specifies whether the upper or lower triangular part is to be referenced.alpha
- The scalar alpha.X
- The input allocation contains vector x, supported elements type Element.F32_2(android.renderscript.RenderScript)
.incX
- The increment for the elements of vector x, must be larger than zero.Y
- The input allocation contains vector y, supported elements type Element.F32_2(android.renderscript.RenderScript)
.incY
- The increment for the elements of vector y, must be larger than zero.A
- The input allocation contains matrix A, supported elements type Element.F32_2(android.renderscript.RenderScript)
.public void CHPR2(int Uplo, Float2 alpha, Allocation X, int incX, Allocation Y, int incY, Allocation Ap)
Uplo
- Specifies whether the upper or lower triangular part is to be supplied in the packed form.alpha
- The scalar alpha.X
- The input allocation contains vector x, supported elements type Element.F32_2(android.renderscript.RenderScript)
.incX
- The increment for the elements of vector x, must be larger than zero.Y
- The input allocation contains vector y, supported elements type Element.F32_2(android.renderscript.RenderScript)
.incY
- The increment for the elements of vector y, must be larger than zero.Ap
- The input allocation contains matrix A, supported elements type Element.F32_2(android.renderscript.RenderScript)
.public void ZHEMV(int Uplo, Double2 alpha, Allocation A, Allocation X, int incX, Double2 beta, Allocation Y, int incY)
Uplo
- Specifies whether the upper or lower triangular part is to be referenced.alpha
- The scalar alpha.A
- The input allocation contains matrix A, supported elements type Element.F64_2(android.renderscript.RenderScript)
.X
- The input allocation contains vector x, supported elements type Element.F64_2(android.renderscript.RenderScript)
.incX
- The increment for the elements of vector x, must be larger than zero.beta
- The scalar beta.Y
- The input allocation contains vector y, supported elements type Element.F64_2(android.renderscript.RenderScript)
.incY
- The increment for the elements of vector y, must be larger than zero.public void ZHBMV(int Uplo, int K, Double2 alpha, Allocation A, Allocation X, int incX, Double2 beta, Allocation Y, int incY)
Uplo
- Specifies whether the upper or lower triangular part of the band matrix A is being supplied.K
- The number of off-diagonals of the matrix Aalpha
- The scalar alpha.A
- The input allocation contains matrix A, supported elements type Element.F64_2(android.renderscript.RenderScript)
.X
- The input allocation contains vector x, supported elements type Element.F64_2(android.renderscript.RenderScript)
.incX
- The increment for the elements of vector x, must be larger than zero.beta
- The scalar beta.Y
- The input allocation contains vector y, supported elements type Element.F64_2(android.renderscript.RenderScript)
.incY
- The increment for the elements of vector y, must be larger than zero.public void ZHPMV(int Uplo, Double2 alpha, Allocation Ap, Allocation X, int incX, Double2 beta, Allocation Y, int incY)
Uplo
- Specifies whether the upper or lower triangular part of the matrix A is supplied in packed form.alpha
- The scalar alpha.Ap
- The input allocation contains matrix A, supported elements type Element.F64_2(android.renderscript.RenderScript)
.X
- The input allocation contains vector x, supported elements type Element.F64_2(android.renderscript.RenderScript)
.incX
- The increment for the elements of vector x, must be larger than zero.beta
- The scalar beta.Y
- The input allocation contains vector y, supported elements type Element.F64_2(android.renderscript.RenderScript)
.incY
- The increment for the elements of vector y, must be larger than zero.public void ZGERU(Double2 alpha, Allocation X, int incX, Allocation Y, int incY, Allocation A)
alpha
- The scalar alpha.X
- The input allocation contains vector x, supported elements type Element.F64_2(android.renderscript.RenderScript)
.incX
- The increment for the elements of vector x, must be larger than zero.Y
- The input allocation contains vector y, supported elements type Element.F64_2(android.renderscript.RenderScript)
.incY
- The increment for the elements of vector y, must be larger than zero.A
- The input allocation contains matrix A, supported elements type Element.F64_2(android.renderscript.RenderScript)
.public void ZGERC(Double2 alpha, Allocation X, int incX, Allocation Y, int incY, Allocation A)
alpha
- The scalar alpha.X
- The input allocation contains vector x, supported elements type Element.F64_2(android.renderscript.RenderScript)
.incX
- The increment for the elements of vector x, must be larger than zero.Y
- The input allocation contains vector y, supported elements type Element.F64_2(android.renderscript.RenderScript)
.incY
- The increment for the elements of vector y, must be larger than zero.A
- The input allocation contains matrix A, supported elements type Element.F64_2(android.renderscript.RenderScript)
.public void ZHER(int Uplo, double alpha, Allocation X, int incX, Allocation A)
Uplo
- Specifies whether the upper or lower triangular part is to be referenced.alpha
- The scalar alpha.X
- The input allocation contains vector x, supported elements type Element.F64_2(android.renderscript.RenderScript)
.incX
- The increment for the elements of vector x, must be larger than zero.A
- The input allocation contains matrix A, supported elements type Element.F64_2(android.renderscript.RenderScript)
.public void ZHPR(int Uplo, double alpha, Allocation X, int incX, Allocation Ap)
Uplo
- Specifies whether the upper or lower triangular part is to be supplied in the packed form.alpha
- The scalar alpha.X
- The input allocation contains vector x, supported elements type Element.F64_2(android.renderscript.RenderScript)
.incX
- The increment for the elements of vector x, must be larger than zero.Ap
- The input allocation contains matrix A, supported elements type Element.F64_2(android.renderscript.RenderScript)
.public void ZHER2(int Uplo, Double2 alpha, Allocation X, int incX, Allocation Y, int incY, Allocation A)
Uplo
- Specifies whether the upper or lower triangular part is to be referenced.alpha
- The scalar alpha.X
- The input allocation contains vector x, supported elements type Element.F64_2(android.renderscript.RenderScript)
.incX
- The increment for the elements of vector x, must be larger than zero.Y
- The input allocation contains vector y, supported elements type Element.F64_2(android.renderscript.RenderScript)
.incY
- The increment for the elements of vector y, must be larger than zero.A
- The input allocation contains matrix A, supported elements type Element.F64_2(android.renderscript.RenderScript)
.public void ZHPR2(int Uplo, Double2 alpha, Allocation X, int incX, Allocation Y, int incY, Allocation Ap)
Uplo
- Specifies whether the upper or lower triangular part is to be supplied in the packed form.alpha
- The scalar alpha.X
- The input allocation contains vector x, supported elements type Element.F64_2(android.renderscript.RenderScript)
.incX
- The increment for the elements of vector x, must be larger than zero.Y
- The input allocation contains vector y, supported elements type Element.F64_2(android.renderscript.RenderScript)
.incY
- The increment for the elements of vector y, must be larger than zero.Ap
- The input allocation contains matrix A, supported elements type Element.F64_2(android.renderscript.RenderScript)
.public void SGEMM(int TransA, int TransB, float alpha, Allocation A, Allocation B, float beta, Allocation C)
TransA
- The type of transpose applied to matrix A.TransB
- The type of transpose applied to matrix B.alpha
- The scalar alpha.A
- The input allocation contains matrix A, supported elements type Element.F32(android.renderscript.RenderScript)
.B
- The input allocation contains matrix B, supported elements type Element.F32(android.renderscript.RenderScript)
.beta
- The scalar beta.C
- The input allocation contains matrix C, supported elements type Element.F32(android.renderscript.RenderScript)
.public void DGEMM(int TransA, int TransB, double alpha, Allocation A, Allocation B, double beta, Allocation C)
TransA
- The type of transpose applied to matrix A.TransB
- The type of transpose applied to matrix B.alpha
- The scalar alpha.A
- The input allocation contains matrix A, supported elements type Element.F64(android.renderscript.RenderScript)
.B
- The input allocation contains matrix B, supported elements type Element.F64(android.renderscript.RenderScript)
.beta
- The scalar beta.C
- The input allocation contains matrix C, supported elements type Element.F64(android.renderscript.RenderScript)
.public void CGEMM(int TransA, int TransB, Float2 alpha, Allocation A, Allocation B, Float2 beta, Allocation C)
TransA
- The type of transpose applied to matrix A.TransB
- The type of transpose applied to matrix B.alpha
- The scalar alpha.A
- The input allocation contains matrix A, supported elements type Element.F32_2(android.renderscript.RenderScript)
.B
- The input allocation contains matrix B, supported elements type Element.F32_2(android.renderscript.RenderScript)
.beta
- The scalar beta.C
- The input allocation contains matrix C, supported elements type Element.F32_2(android.renderscript.RenderScript)
.public void ZGEMM(int TransA, int TransB, Double2 alpha, Allocation A, Allocation B, Double2 beta, Allocation C)
TransA
- The type of transpose applied to matrix A.TransB
- The type of transpose applied to matrix B.alpha
- The scalar alpha.A
- The input allocation contains matrix A, supported elements type {@link Element#F64_2B
- The input allocation contains matrix B, supported elements type {@link Element#F64_2beta
- The scalar beta.C
- The input allocation contains matrix C, supported elements type {@link Element#F64_2public void SSYMM(int Side, int Uplo, float alpha, Allocation A, Allocation B, float beta, Allocation C)
Side
- Specifies whether the symmetric matrix A appears on the left or right.Uplo
- Specifies whether the upper or lower triangular part is to be referenced.alpha
- The scalar alpha.A
- The input allocation contains matrix A, supported elements type Element.F32(android.renderscript.RenderScript)
.B
- The input allocation contains matrix B, supported elements type Element.F32(android.renderscript.RenderScript)
.beta
- The scalar beta.C
- The input allocation contains matrix C, supported elements type Element.F32(android.renderscript.RenderScript)
.public void DSYMM(int Side, int Uplo, double alpha, Allocation A, Allocation B, double beta, Allocation C)
Side
- Specifies whether the symmetric matrix A appears on the left or right.Uplo
- Specifies whether the upper or lower triangular part is to be referenced.alpha
- The scalar alpha.A
- The input allocation contains matrix A, supported elements type Element.F64(android.renderscript.RenderScript)
.B
- The input allocation contains matrix B, supported elements type Element.F64(android.renderscript.RenderScript)
.beta
- The scalar beta.C
- The input allocation contains matrix C, supported elements type Element.F64(android.renderscript.RenderScript)
.public void CSYMM(int Side, int Uplo, Float2 alpha, Allocation A, Allocation B, Float2 beta, Allocation C)
Side
- Specifies whether the symmetric matrix A appears on the left or right.Uplo
- Specifies whether the upper or lower triangular part is to be referenced.alpha
- The scalar alpha.A
- The input allocation contains matrix A, supported elements type Element.F32_2(android.renderscript.RenderScript)
.B
- The input allocation contains matrix B, supported elements type Element.F32_2(android.renderscript.RenderScript)
.beta
- The scalar beta.C
- The input allocation contains matrix C, supported elements type Element.F32_2(android.renderscript.RenderScript)
.public void ZSYMM(int Side, int Uplo, Double2 alpha, Allocation A, Allocation B, Double2 beta, Allocation C)
Side
- Specifies whether the symmetric matrix A appears on the left or right.Uplo
- Specifies whether the upper or lower triangular part is to be referenced.alpha
- The scalar alpha.A
- The input allocation contains matrix A, supported elements type Element.F64_2(android.renderscript.RenderScript)
.B
- The input allocation contains matrix B, supported elements type Element.F64_2(android.renderscript.RenderScript)
.beta
- The scalar beta.C
- The input allocation contains matrix C, supported elements type Element.F64_2(android.renderscript.RenderScript)
.public void SSYRK(int Uplo, int Trans, float alpha, Allocation A, float beta, Allocation C)
Uplo
- Specifies whether the upper or lower triangular part of C is to be referenced.Trans
- The type of transpose applied to the operation.alpha
- The scalar alpha.A
- The input allocation contains matrix A, supported elements type Element.F32(android.renderscript.RenderScript)
.beta
- The scalar beta.C
- The input allocation contains matrix C, supported elements type Element.F32(android.renderscript.RenderScript)
.public void DSYRK(int Uplo, int Trans, double alpha, Allocation A, double beta, Allocation C)
Uplo
- Specifies whether the upper or lower triangular part of C is to be referenced.Trans
- The type of transpose applied to the operation.alpha
- The scalar alpha.A
- The input allocation contains matrix A, supported elements type Element.F64(android.renderscript.RenderScript)
.beta
- The scalar beta.C
- The input allocation contains matrix C, supported elements type Element.F64(android.renderscript.RenderScript)
.public void CSYRK(int Uplo, int Trans, Float2 alpha, Allocation A, Float2 beta, Allocation C)
Uplo
- Specifies whether the upper or lower triangular part of C is to be referenced.Trans
- The type of transpose applied to the operation.alpha
- The scalar alpha.A
- The input allocation contains matrix A, supported elements type Element.F32_2(android.renderscript.RenderScript)
.beta
- The scalar beta.C
- The input allocation contains matrix C, supported elements type Element.F32_2(android.renderscript.RenderScript)
.public void ZSYRK(int Uplo, int Trans, Double2 alpha, Allocation A, Double2 beta, Allocation C)
Uplo
- Specifies whether the upper or lower triangular part of C is to be referenced.Trans
- The type of transpose applied to the operation.alpha
- The scalar alpha.A
- The input allocation contains matrix A, supported elements type Element.F64_2(android.renderscript.RenderScript)
.beta
- The scalar beta.C
- The input allocation contains matrix C, supported elements type Element.F64_2(android.renderscript.RenderScript)
.public void SSYR2K(int Uplo, int Trans, float alpha, Allocation A, Allocation B, float beta, Allocation C)
Uplo
- Specifies whether the upper or lower triangular part of C is to be referenced.Trans
- The type of transpose applied to the operation.alpha
- The scalar alpha.A
- The input allocation contains matrix A, supported elements type Element.F32(android.renderscript.RenderScript)
.B
- The input allocation contains matrix B, supported elements type Element.F32(android.renderscript.RenderScript)
.beta
- The scalar beta.C
- The input allocation contains matrix C, supported elements type Element.F32(android.renderscript.RenderScript)
.public void DSYR2K(int Uplo, int Trans, double alpha, Allocation A, Allocation B, double beta, Allocation C)
Uplo
- Specifies whether the upper or lower triangular part of C is to be referenced.Trans
- The type of transpose applied to the operation.alpha
- The scalar alpha.A
- The input allocation contains matrix A, supported elements type Element.F64(android.renderscript.RenderScript)
.B
- The input allocation contains matrix B, supported elements type Element.F64(android.renderscript.RenderScript)
.beta
- The scalar beta.C
- The input allocation contains matrix C, supported elements type Element.F64(android.renderscript.RenderScript)
.public void CSYR2K(int Uplo, int Trans, Float2 alpha, Allocation A, Allocation B, Float2 beta, Allocation C)
Uplo
- Specifies whether the upper or lower triangular part of C is to be referenced.Trans
- The type of transpose applied to the operation.alpha
- The scalar alpha.A
- The input allocation contains matrix A, supported elements type Element.F32_2(android.renderscript.RenderScript)
.B
- The input allocation contains matrix B, supported elements type Element.F32_2(android.renderscript.RenderScript)
.beta
- The scalar beta.C
- The input allocation contains matrix C, supported elements type Element.F32_2(android.renderscript.RenderScript)
.public void ZSYR2K(int Uplo, int Trans, Double2 alpha, Allocation A, Allocation B, Double2 beta, Allocation C)
Uplo
- Specifies whether the upper or lower triangular part of C is to be referenced.Trans
- The type of transpose applied to the operation.alpha
- The scalar alpha.A
- The input allocation contains matrix A, supported elements type Element.F64_2(android.renderscript.RenderScript)
.B
- The input allocation contains matrix B, supported elements type Element.F64_2(android.renderscript.RenderScript)
.beta
- The scalar beta.C
- The input allocation contains matrix C, supported elements type Element.F64_2(android.renderscript.RenderScript)
.public void STRMM(int Side, int Uplo, int TransA, int Diag, float alpha, Allocation A, Allocation B)
Side
- Specifies whether the symmetric matrix A appears on the left or right.Uplo
- Specifies whether matrix A is upper or lower triangular.TransA
- The type of transpose applied to matrix A.Diag
- Specifies whether or not A is unit triangular.alpha
- The scalar alpha.A
- The input allocation contains matrix A, supported elements type Element.F32(android.renderscript.RenderScript)
.B
- The input allocation contains matrix B, supported elements type Element.F32(android.renderscript.RenderScript)
.public void DTRMM(int Side, int Uplo, int TransA, int Diag, double alpha, Allocation A, Allocation B)
Side
- Specifies whether the symmetric matrix A appears on the left or right.Uplo
- Specifies whether matrix A is upper or lower triangular.TransA
- The type of transpose applied to matrix A.Diag
- Specifies whether or not A is unit triangular.alpha
- The scalar alpha.A
- The input allocation contains matrix A, supported elements type Element.F64(android.renderscript.RenderScript)
.B
- The input allocation contains matrix B, supported elements type Element.F64(android.renderscript.RenderScript)
.public void CTRMM(int Side, int Uplo, int TransA, int Diag, Float2 alpha, Allocation A, Allocation B)
Side
- Specifies whether the symmetric matrix A appears on the left or right.Uplo
- Specifies whether matrix A is upper or lower triangular.TransA
- The type of transpose applied to matrix A.Diag
- Specifies whether or not A is unit triangular.alpha
- The scalar alpha.A
- The input allocation contains matrix A, supported elements type Element.F32_2(android.renderscript.RenderScript)
.B
- The input allocation contains matrix B, supported elements type Element.F32_2(android.renderscript.RenderScript)
.public void ZTRMM(int Side, int Uplo, int TransA, int Diag, Double2 alpha, Allocation A, Allocation B)
Side
- Specifies whether the symmetric matrix A appears on the left or right.Uplo
- Specifies whether matrix A is upper or lower triangular.TransA
- The type of transpose applied to matrix A.Diag
- Specifies whether or not A is unit triangular.alpha
- The scalar alpha.A
- The input allocation contains matrix A, supported elements type Element.F64_2(android.renderscript.RenderScript)
.B
- The input allocation contains matrix B, supported elements type Element.F64_2(android.renderscript.RenderScript)
.public void STRSM(int Side, int Uplo, int TransA, int Diag, float alpha, Allocation A, Allocation B)
Side
- Specifies whether the symmetric matrix A appears on the left or right.Uplo
- Specifies whether matrix A is upper or lower triangular.TransA
- The type of transpose applied to matrix A.Diag
- Specifies whether or not A is unit triangular.alpha
- The scalar alpha.A
- The input allocation contains matrix A, supported elements type Element.F32(android.renderscript.RenderScript)
.B
- The input allocation contains matrix B, supported elements type Element.F32(android.renderscript.RenderScript)
.public void DTRSM(int Side, int Uplo, int TransA, int Diag, double alpha, Allocation A, Allocation B)
Side
- Specifies whether the symmetric matrix A appears on the left or right.Uplo
- Specifies whether matrix A is upper or lower triangular.TransA
- The type of transpose applied to matrix A.Diag
- Specifies whether or not A is unit triangular.alpha
- The scalar alpha.A
- The input allocation contains matrix A, supported elements type Element.F64(android.renderscript.RenderScript)
.B
- The input allocation contains matrix B, supported elements type Element.F64(android.renderscript.RenderScript)
.public void CTRSM(int Side, int Uplo, int TransA, int Diag, Float2 alpha, Allocation A, Allocation B)
Side
- Specifies whether the symmetric matrix A appears on the left or right.Uplo
- Specifies whether matrix A is upper or lower triangular.TransA
- The type of transpose applied to matrix A.Diag
- Specifies whether or not A is unit triangular.alpha
- The scalar alpha.A
- The input allocation contains matrix A, supported elements type Element.F32_2(android.renderscript.RenderScript)
.B
- The input allocation contains matrix B, supported elements type Element.F32_2(android.renderscript.RenderScript)
.public void ZTRSM(int Side, int Uplo, int TransA, int Diag, Double2 alpha, Allocation A, Allocation B)
Side
- Specifies whether the symmetric matrix A appears on the left or right.Uplo
- Specifies whether matrix A is upper or lower triangular.TransA
- The type of transpose applied to matrix A.Diag
- Specifies whether or not A is unit triangular.alpha
- The scalar alpha.A
- The input allocation contains matrix A, supported elements type Element.F64_2(android.renderscript.RenderScript)
.B
- The input allocation contains matrix B, supported elements type Element.F64_2(android.renderscript.RenderScript)
.public void CHEMM(int Side, int Uplo, Float2 alpha, Allocation A, Allocation B, Float2 beta, Allocation C)
Side
- Specifies whether the symmetric matrix A appears on the left or right.Uplo
- Specifies whether the upper or lower triangular part is to be referenced.alpha
- The scalar alpha.A
- The input allocation contains matrix A, supported elements type Element.F32_2(android.renderscript.RenderScript)
.B
- The input allocation contains matrix B, supported elements type Element.F32_2(android.renderscript.RenderScript)
.beta
- The scalar beta.C
- The input allocation contains matrix C, supported elements type Element.F32_2(android.renderscript.RenderScript)
.public void ZHEMM(int Side, int Uplo, Double2 alpha, Allocation A, Allocation B, Double2 beta, Allocation C)
Side
- Specifies whether the symmetric matrix A appears on the left or right.Uplo
- Specifies whether the upper or lower triangular part is to be referenced.alpha
- The scalar alpha.A
- The input allocation contains matrix A, supported elements type Element.F64_2(android.renderscript.RenderScript)
.B
- The input allocation contains matrix B, supported elements type Element.F64_2(android.renderscript.RenderScript)
.beta
- The scalar beta.C
- The input allocation contains matrix C, supported elements type Element.F64_2(android.renderscript.RenderScript)
.public void CHERK(int Uplo, int Trans, float alpha, Allocation A, float beta, Allocation C)
Uplo
- Specifies whether the upper or lower triangular part of C is to be referenced.Trans
- The type of transpose applied to the operation.alpha
- The scalar alpha.A
- The input allocation contains matrix A, supported elements type Element.F32_2(android.renderscript.RenderScript)
.beta
- The scalar beta.C
- The input allocation contains matrix C, supported elements type Element.F32_2(android.renderscript.RenderScript)
.public void ZHERK(int Uplo, int Trans, double alpha, Allocation A, double beta, Allocation C)
Uplo
- Specifies whether the upper or lower triangular part of C is to be referenced.Trans
- The type of transpose applied to the operation.alpha
- The scalar alpha.A
- The input allocation contains matrix A, supported elements type Element.F64_2(android.renderscript.RenderScript)
.beta
- The scalar beta.C
- The input allocation contains matrix C, supported elements type Element.F64_2(android.renderscript.RenderScript)
.public void CHER2K(int Uplo, int Trans, Float2 alpha, Allocation A, Allocation B, float beta, Allocation C)
Uplo
- Specifies whether the upper or lower triangular part of C is to be referenced.Trans
- The type of transpose applied to the operation.alpha
- The scalar alpha.A
- The input allocation contains matrix A, supported elements type Element.F32_2(android.renderscript.RenderScript)
.B
- The input allocation contains matrix B, supported elements type Element.F32_2(android.renderscript.RenderScript)
.beta
- The scalar beta.C
- The input allocation contains matrix C, supported elements type Element.F32_2(android.renderscript.RenderScript)
.public void ZHER2K(int Uplo, int Trans, Double2 alpha, Allocation A, Allocation B, double beta, Allocation C)
Uplo
- Specifies whether the upper or lower triangular part of C is to be referenced.Trans
- The type of transpose applied to the operation.alpha
- The scalar alpha.A
- The input allocation contains matrix A, supported elements type Element.F64_2(android.renderscript.RenderScript)
.B
- The input allocation contains matrix B, supported elements type Element.F64_2(android.renderscript.RenderScript)
.beta
- The scalar beta.C
- The input allocation contains matrix C, supported elements type Element.F64_2(android.renderscript.RenderScript)
.public void BNNM(Allocation A, int a_offset, Allocation B, int b_offset, Allocation C, int c_offset, int c_mult)
A
- The input allocation contains matrix A, supported elements type Element.U8(android.renderscript.RenderScript)
.a_offset
- The offset for all values in matrix A, e.g A[i,j] = A[i,j] - a_offset. Value should be from 0 to 255.B
- The input allocation contains matrix B, supported elements type Element.U8(android.renderscript.RenderScript)
.b_offset
- The offset for all values in matrix B, e.g B[i,j] = B[i,j] - b_offset. Value should be from 0 to 255.C
- The input allocation contains matrix C, supported elements type Element.U8(android.renderscript.RenderScript)
.c_offset
- The offset for all values in matrix C.c_mult
- The multiplier for all values in matrix C, e.g C[i,j] = (C[i,j] + c_offset) * c_mult.